INTRODUCTION ... 4

SMALL PLANS (under 140 square feet)

1 Canton Railroad — HO
 switching a soap factory 6
2 American Can — HO or N
 modeling a full-sized industry 8
3 Free-mo Steel — HO
 a heavy industry on a modular layout 10
4 Bear Island Paper Mill — N
 a paper mill served by CSX 12
5 Mower Lumber — N
 a West Virgina lumber railroad 14
6 Warrenton — HO
 a British-style layout of a stub terminal 16
7 First Steel — HO
 a steel mill railroad that can grow 18
8 Keystone Viaduct — N
 Ntrak modules for home or show 20
9 Brooke Yard — HO
 a pocket terminal in a tricky space 22
10 Overland Route — HO
 a tribute to the transcontinental railroad 24
11 Menil-La-Tour — On30 or O14
 running a WWI narrow gauge railroad 26
12 WWII Stateside Port — HO
 loading naval convoys from trains 28
13 Fort Miles — HO
 modeling U.S. coastal railway artillery in WWII .. 30
14 Cape Canaveral — HO
 a model railroad that launches rockets 32
15 Victoria Crater Railway — Sn30
 a mining railroad on Mars 34

MEDIUM PLANS (140 to 300 square feet)

16 Cowan Country — N
 mainline operation with helpers on three decks . . 36
17 West Bottoms — O
 early MoPac steam in Kansas City 38
18 NYC High Line — HO
 Manhattan’s elevated industrial line 40
19 SNE Air Line — HO
 modeling the SNE in Providence 42
20 Trans-Andes Railway — HO
 Peruvian railroading at 15,000 feet 44
21 Alnwick Branch — OO
 from the English coast to castle 46

22 Alexandria Waterfront — O
 urban switching during the Civil War 48
23 Trans-Iranian Railway — HO
 Lend Lease over the Persian Corridor 50
24 EMD Progress Rail — HO
 modeling a locomotive factory 52
25 Ballard Terminal Railroad — HO
 a Seattle shore-front short line 54
26 Sunon Motors — HO
 switching auto trains during a shift change 56
27 Powder River Basin — N or Z
 a BNSF-UP joint coal line 58
28 DaniCa Forest Products — HO
 a southeastern chemical paper mill 60
29 Rockport & Weak — On30
 a Maine narrow gauge freight hauler 62
30 Soldier Summit — N
 running three railroads over the Wasatch 64

LARGE PLANS (over 300 square feet)

31 Winding Gulf — HO
 modeling two coal railroads in one valley 66
32 Wiscasset — On30
 the WW&F, past and present 68
33 Everett Street Station — HO
 Milwaukee Road’s Hiawatha at home 70
34 Chili Line — HO and HOn3
 narrow gauge action in a double-deck mushroom .. 72
35 Riverside — HO
 a citrus-based industrial hot spot 74
36 Handley Yard — N
 moving coal loads in two directions 76
37 Montgomery — HO
 BNSF mainline running and local switching 78
38 White River Junction — HO
 modeling four live routes 80
39 Maryland Midland — N
 a NTrak shortline layout 82
40 Horseshoe Curve — N
 a subdivision for an NTrak club 84
41 Sunset Route — HO
 modern freight action in Arizona 86
42 Tennessee Pass — O
 Rio Grande steam across the Rockies 88
43 Tehachapi Loop — N
 running long trains over an iconic location 90
44 Carrington Subdivision — S
 North Dakota’s Soo Line in the transition era 92
45 Lampasas Subdivision — HO
 BNSF deep in the heart of Texas 94
Introduction

I enjoy layout planning. It is my favorite part of this great hobby. This book is a compendium of layout designs that I have developed for my own use or for other people and organizations.

I keep notebooks handy and scribble plans as the ideas come to me. My home office is cluttered with more than a dozen notebooks and sketch pads filled with design ideas. When I haven’t had a notebook handy, I have used napkins, scrap paper, pizza boxes, and even a foggy door in the shower to work out ideas for a layout problem that has been vexing me.

Of the thousands of plans I have sketched out, this book features 45 that have reached the final stage of presentation.

Design principles
When designing layouts, I adhere to the following general principles.

Be prototype based. I usually base my layouts on actual prototypes. While I do some freelancing in my designs, they are mostly based on prototype practice.

Keep hidden track to a minimum. In my experience, the hassle of operating hidden track far outweighs any added benefits.

Create a sincere design. Sincere is a term coined by model railroaders to describe a layout where the trains run through the scene only once in a session. My layouts try to give a strong sense of going someplace, and a sincere design helps create that feeling.

Maintain a high scenery to track ratio. I try not to cram track into every available square inch of a layout design. I like to give the trains breathing space. This includes simple areas I call “country running” between busy scenes.

Use a walkthrough design with aisles that are as wide as possible. The aisles are the easiest part of the layout to build. Make them big.

The layouts
In selecting the layouts for this book, I aimed for a wide variety of subjects, scales, and sizes. They are organized into small, medium, and large designs, and range from shelf layouts to those that can fill a basement or a garage.

There is a slight bias to East Coast railroads because I know them the best, but I have included several from other regions of the United States. Five of the railroads are not in the United States, including one that is set on Mars about 75–100 years from now. Most of these layouts have a theme that tells a story.

I tried to pick subjects that could be built without having to scratchbuild a majority of the rolling stock and/or structures. I also tried to include tips on obtaining specific rolling stock and constructing buildings and scenery.

Some of the smaller layout designs in the book feature a single industry or activity. Most of these plans can be
I use Adobe Illustrator for the precise drawing, including the layout of track components, easements, and curve radii. Once the engineering design is finished, I use Photoshop to add textures and scenic elements.

These are some of the notebooks in which I have been scribbling layout designs over the years. I like to do the early conceptual work for a layout in pencil on graph paper.
Coke hoppers wait in a yard in front of the blast furnaces at Detroit Steel.

FIRST STEEL — HO scale

Locale: Northeast United States
Era: 1950–1990
Style: Walk-in
Mainline run: 38 feet
Train length: 6–12 cars
Scale of plan: ½" = 1 foot, 12" grid

Size: 4 x 8, expanded to 10 x 13 feet
Prototype: Freelanced
Turnouts: No. 6 (and one No. 4)
Maximum grade: 4 percent
Minimum radius: 18"
Recent rover expeditions have shown that Mars has many of the ingredients necessary for mankind’s expansion beyond Earth. With manned missions being planned by several organizations, humans may land on Mars in the not-too-distant future. Colonization could happen soon thereafter.

In the scenario presented here, Mars has developed several settlements that are largely self-sufficient, producing air, water, food, fuel, and housing from native materials. However, they need to import finished high-technology products from Earth.

In return, they export Deuterium, a material needed in fission and fusion reactors. It is 10,000 times more valuable than gold, and is much more plentiful on Mars than on Earth. (This scenario is based largely on the ideas presented by Robert Zubrin in his book *The Case for Mars.*)

Early iron manufacturing on Mars used surface scrapers to mine the low-grade, iron-bearing soil. While it did produce enough iron to bootstrap the steel and other industries, the discovery of a rich vein of hematite “blueberries” in Victoria Crater led Martian business interests to begin mining there. Since the soil leading to the crater was not suitable for extensive heavy-wheeled vehicle traffic, the mining company built a narrow gauge railroad from the closest settlement, Musk, about 70 miles away, to haul the ore.

In exploring the right-of-way, the surveyors discovered a frozen lake under the loose soil about halfway between the crater and Musk. The mining company erected an electrolysis plant to convert the ice to hydrogen and oxygen. This creates hydrogen for fuel, oxygen for air to breathe, and Deuterium for export.

The model railroad layout is designed for a small room, but it could also be used as a portable layout to exhibit at train shows and science fairs. It has three main areas, each built on a 6-foot-long section.

On the right side of the layout is the settlement of Musk with its industrial, agricultural, and cultural areas. Most of the structures can be depicted on the backdrop, but a passenger station and some industrial structures can be modeled, including a steel mill, chemical plant, and various manufacturing facilities. The steel mill uses a direct-reduction technique suitable for Martian conditions. The passenger station includes an airlock that allows passengers to board or exit the cars.

The tracks continue to the center section, which houses the electrolysis plant. The plant uses both photovoltaic cells and a fusion reactor to generate electricity. Here, a passing siding can be used to load tank cars with water, hydrogen fuel, and oxygen.

At the far left, the tracks reach the iron mine, a passenger station, and some smaller temporary housing units for workers. The station has an overlook for viewing mine activities and admiring the huge crater.

The mine is located in the crater. The bucket wheel excavators and a central benefactor device, depicted on the backdrop, extract ore from the exposed soil in the crater. The ore is...
sent to a tipple at the rim of the crater via conveyors. The tipple loads the ore into jimmies on two parallel loading tracks. There is no runaround, so the engines utilize a push-pull method of operation.

Since high-technology goods need to be imported from Earth, they are quite expensive. Thus, the railroad utilizes simple, rugged technology built as quickly and inexpensively as possible. This is the perfect situation for a narrow gauge railroad. In fact, from a distance, this railroad looks a lot like one on Earth 100 years earlier.

This makes the job of the modeler easier, as existing HO engines and cars can be used with only cosmetic alterations to account for operation in an atmosphere without oxygen. HO scale model diesels could be modified to have airtight operator compartments and hydrogen fuel tanks.

HO freight cars could be used with modifications such as removing the air brakes and perhaps lightening the frames. The reduced gravity on Mars means that cars will cube out before being overloaded by weight. A modeler in the United States could use European or Australian rolling stock, which is not often seen here, to create an exotic Martian look.

The track would use lightweight rail on concrete ties, as there is no wood on Mars.

By modeling in S scale, you could use 28mm scale science-fiction figures from various manufacturers. These companies also make futuristic vehicles that can help detail the scenes. On Mars, the figures must wear spacesuits. However, recent research at MIT and other places is leading to the creation of spacesuits that resemble wet suits, which would be more comfortable to wear. So converting these S scale figures to having these new spacesuits may be easily done with a little modeling putty.

All structures need to be scratchbuilt, and you can use HO scale industrial parts like tanks and electric towers. Mars colonization literature suggests that structures would be comprised of domes and modular elements, or made from locally fabricated bricks. Many housing units and structures would be built at least partially underground for protection from radiation. However, agricultural units would need exposure to sunlight, possibly through transparent domes.

Operating the layout is rather simple. Trains with ore cars and tank cars shuttle back and forth to the various industries. Other trains take passengers and workers to and fro.

The ore shuttle can be animated for simplified operation when displaying at shows. The operator would be free to interact with the spectators to discuss the potential benefits and costs of settling Mars.

VICTORIA CRATER

RAILWAY — Sn30 scale

- **Size:** 8 x 12 feet
- **Era:** 2080–2100
- **Locale:** Mars
- **Prototype:** Freelanced
- **Style:** Shelf or exhibition
- **Mainline run:** 18 feet
- **Minimum radius:** 24"
- **Turnouts:** No. 6
- **Maximum grade:** 0 percent
- **Train length:** 4–6 cars
- **Scale of plan:** ½" = 1 foot, 12" grid
TRANS-ANDES RAILWAY — HO scale

Size: 12 x 19 feet
Prototype: FCCA
Locale: Casapalca, Peru
Era: 2015

Style: Walk-in
Mainline run: 110 feet
Minimum radius: 30° on main line, 18° on Galera wye
Turnouts: No. 6

Maximum grade: 4 percent on main line, 2.5 percent in helix
Train length: 7–8 cars

Scale of plan: ½” = 1 foot, 12” grid
Even today, a paper mill makes a good subject for a model railroad. Railroads use a variety of car types to service a paper mill including bulkhead flatcars, tank cars, open wood-chip gondolas, covered hoppers, coal hoppers, and boxcars.

DaniCa Forest Products is a freelanced chemical process paper mill typically found in the Southeast. (The Ca represents its Canadian owners.) In addition to making paper pulp, the chemical process creates various chemical by-products including that funky paper mill smell. Most by-products are recycled or shipped out as commodities.

As depicted on the layout, the mill can accept pulp logs on bulkhead flatcars, or wood chips on tractor trailers. A specialized unloader that looks like a backhoe mounted on a rail gantry knocks the pulp logs into a water flume. The flume then transports the logs to a drum debarker and chipper.

Fresh chips join others brought in by truck on a wood-chip pile. An array of conveyors moves the chips from the piles to the kraft mill, where they get converted to pulp. The pulp is shipped out as an intermediate product, but much of it moves to the Fourdrinier machine house, where it is made into paper.

Most buildings come from Walthers kits, although some need to be kitbashed to make them longer and narrower. Scratchbuilding is necessary for the conveyors and log and chip unloaders.

The detailed structures provide a modeling challenge. With tall buildings on each side of the tracks and conveyors crossing overhead, the layout offers an industrial canyon for visual spectacle.

The interchange yard has room for other industries. The plan has a veneer factory but any industry would do.

If space allows, this layout could be expanded as shown on the plan.
When I proposed the oNetrak concept to Northern Virginia Ntrak at an annual Christmas party, the idea was hotly received, literally, as the poster board I used to illustrate the idea was accidentally set afire by one of the holiday candles. Luckily, the host of the party was a professional firefighter, and he quickly doused the flames, but the oNetrak idea was launched. Later, the club developed a set of oNetrak modules depicting the Chesapeake & Ohio Mountain Subdivision.

The oNetrak concept works best when it is set up with a unified theme such as the C&O Mountain Subdivision or the Florida East Coast Modelers oNetrak layout. The layouts depicted here use a unified theme based on the Maryland Midland Railway.

The Maryland Midland is a short line that grew out of the abandoned Western Maryland Tide Subdivision. The main yard at Union Bridge hosts the largest customer on the line, Lehigh Cement. The cement plant was reached via tracks running down Farquhar Street. (Those were recently removed, but they were in operation in 2005 when this layout is set.)

The horseshoe curve at Sabillasville at the top of the Owens Creek canyon is a railfan favorite. The Maryland Midland interchanges with CSX at Highfield and Emory Grove.

The smaller layout depicts two towns, Union Bridge and Thurmont. These modules are fairly conventional rectangles except that they are built in 5-foot increments because 5 feet makes more efficient use of 8-foot lumber when cutting the frame members, and they are not much harder to transport than 4-foot-long modules. Two end-turn modules create a loop.

In the larger layout, a set of specialized modules focuses on Sabillasville, the twin bridges in Owens Creek canyon, and Emory Grove, which
The Denver & Rio Grande Western Tennessee Pass Line, at 10,212 feet, is the highest main line in the United States, and it is also one of the steepest. During WWII, traffic boomed, and this is the time period depicted in the track plan. Minturn is a crew change point and site of the helper engine terminal. Little switching or classification occurs in Minturn Yard. However, the Malta Turn is made up in the yard from blocks dropped by manifest trains for switching in town and the few industries on the line. Malta is modeled in staging.

Helpers with a separate crew tack on the end of the train. Both crews throttle up the grade. Wireless DCC is a key requirement for this operation.

Upon leaving the yard, the tracks pass Rex, where a 2 percent grade kicks in. The track enters the steep Eagle River Canyon and approaches Belden. The plan depicts both sides of the canyon since the railroad built the siding across the creek from the main. The Gilman Mine tipple is in the canyon.

After passing the mining town of Red Cliff, the tracks reach Pando. Here, Camp Hale, home of the U.S. Army 10th Mountain Division, was located. The camp is depicted on the backdrop.

Continuing uphill, the tracks punch through Deen Tunnel and then traverse the famous S curves at Mitchell.

The summit tunnel at 62.4" elevation caps the climb. Tennessee Pass siding on the east end is a key location and marks the end of the visible run. Here, helpers cut and turn on the wye.

A deep rocky cut hides the entrance into the helix and staging. The helix has three tracks and four turns at 2 percent grade for nearly 650 feet of track. Trains can be staged in a serial or head-to-toe manner. There is plenty of room inside the helix for a staging operator to manage the trains and get them ready for their next run.

This is an all-steam railroad. Although D&RGW had some diesels during this time period, they did not run on Tennessee Pass. Amassing the O scale steam engines needed for this layout could be a challenge and potentially expensive. In the interest of economy, you could move the time period on the layout up to the transition era, without too much anachronistic drama, except that the second bore of the Tennessee Pass Tunnel would be missing. Traffic would also be less, and Camp Hale would be shut down.